Scratching the Iceberg: Unveiling the Outdated
Third-Party Native Libraries in Android Apps

Shiyang Zhang*, Chengwei Liu%, Sen Chen'$, Lyuye Zhang?, Yang Liu?
*College of Intelligence and Computing, Tianjin University, China
TCollege of Cryptology and Cyber Science, Nankai University, China
J:College of Computing and Data Science, Nanyang Technological University, Singapore

Abstract—Android apps increasingly rely on third-party native
C/C++ libraries to deal with low-latency performance and mature
functionality, making them a central driver of capability across
production deployments. However, opaque binary distribution
outside mature package managers impedes discovery, auditing,
version tracking, and lifecycle management, allowing technical
lag in outdated dependencies to persist and degrade security,
compatibility, and reliability. Existing works have investigated
the technical lags of third-party libraries in different package
manager ecosystems, while Android native libraries are rarely
studied due to the lack a comprehensive native library indexing
to boost software composition analysis (SCA) tools.

To this end, by following a greedy and aggressive strategy
to identify possible repository sources and collect Android
native libraries, we constructed the first comprehensive native
library dataset AndroidN L for Android, with over 60K libraries
and 292K versions well retained. Our experiments proved its
completeness that 85.1% of binaries in real-world APPs can
be successfully traced in AndroidN L, with 10.1% of the rest
suspicious to be not third-party native libraries. Moreover,
AndroidN L is also validated to be useful regarding improving
native library detection for Android, the experiments show that
the state-of-the-art (SOTA) software composition analysis (SCA)
tools (i.e., LIbRARIAN) can be improved by at least 78.4% on
accuracy. Our follow-up studies also highlighted the prevalence
and actionable strategy for technical lags on Android native
libraries, which could further shed the light on better solutions
for the community.

Index Terms—Android Native Library, Software Composition
Analysis, Tachnical Lag

I. INTRODUCTION

Native C/C++ libraries are integral to modern Android
applications because they enable low-latency performance and
access to mature functionality to avoid reimplementing the
wheels. They are appsprevalently adopted across production
apps, shaping both capability and potential fragility [1]. Samhi
et al [1] analyzed over 2.8 million Android apps in ANDRO-
Z0O0 and found that 62.9% of them incorporated native code.

The wideadoption of third-party native libraries would in-
troduce significant risk because substantial portions of app
functionality depend on external components, increasing the
likelihood of vulnerabilities, incompatibilities, and runtime
failures. Their persistence within apps fosters technical lag
and prolongs exposure to known risks; for example, devel-
opers take on average over 500 days to apply native-library
security patches, while maintainers release patches in about 55

§ Corresponding authors.

days [2]. Therefore, accurately identifying, monitoring, and
mitigating such delays is essential to improve security and
support the long-term stability of the Android ecosystem.

Before undertaking a comprehensive study of technical lag
arising from outdated native libraries in Android apps, it
is essential to have accurate and reliable detection tooling
for Android native libraries. Although many existing stud-
ies 3, [4], (S, [6] examine third-party libraries (TPLs)
in the Android ecosystem using static analysis, code-clone
detection, or machine-learning methods, they primarily target
TPLs published and indexed by mature package managers
rather than native libraries integrated as binaries within APKs.
To the best of our knowledge, Almanee et al. [2] proposed
LibRARIAN, the first and, so far, only academic tool to specif-
ically identify Android native libraries via binary similarity
analysis. Because it matches binaries against a pre-constructed
reference set, the accuracy of LibRARIAN depends critically
on the coverage and completeness of that reference corpus.
However, LibRARIAN was only equipped with a limited
feature dataset constructed from 200 Apps, which limits its
applicability to real-world detection at scale. To this end,
before studying delays in native-library updates, we construct
the first comprehensive dataset of Android native libraries to
enable robust detection and to support downstream tasks such
as software composition analysis (SCA).

To deal with it, we face the following challenges: (1) Frag-
mentation and Lack of a Central Index: Native libraries
are scattered across multiple sources, with no standardized
repository or indexing services (like Golang Index [7]). Many
are embedded directly in APKs without clear metadata, and
dependency resolution varies across build tools, complicating
structured aggregation. (2) Coverage and Dataset Com-
pleteness: The diversity of Android leads to a wide range
of native libraries with multiple versions, architectures, and
customization levels. Capturing all widely used cases requires
extensive crawling, filtering, and deduplication to ensure that
the dataset is representative while avoiding redundancy.

Therefore, in this paper, we first proposed an extensive and
greedy approach to identify as many potential repositories of
Android native libraries as possible and constructed the first
comprehensive dataset for Android native library detection.
Specifically, for Challenge 1, by systematically analyzing
existing ground truths of Android native library importing,
we summarized three major types of Android native li-

braries based on their importing ways: Directly-Included, Self-
Compiled, and Remotely-Integrated Libraries, and collected
as many potential repository sources as possible. For Chal-
lenge 2, beyond collecting repository sources with explainable
evidence, we adopted an extensive searching based on large
language models (LLMs) to avoid missing necessary sources.
As the result, after collecting all native libraries from identified
sources, we constructed a comprehensive native library dataset
for Android Apps called AndroidN L, with 60,287 libraries
and 292,797 versions, to facilitate downstream tasks. Our
experiments showed that, against a well-constructed real-world
testset of mainstream apps, AndroidNL has significantly
covered at least 85.1% of all native libraries in these Apps,
with 10.1% suspicious to be Self-Compiled instead of reused
from third-party. Moreover, by incorporating LibRARIAN
with the feature dataset derived from AndroidN L, the iden-
tification rate of LibRARIAN has been significantly improved
by 78.4%, which also outperformed the SOTA commercial tool
BinaryAlI [8] by 82.9% on identifiable Native libraries.
Based on this, we further conducted a large scale study to
investigate the prevalence of technical lags in real-world Apps
based on LibRARIAN with AndroidN L, and investigated to
what extent these technical lags are supposed to and can be
handled by developers. Our empirical analysis revealed that:
1) Almost half analyzed APKs (48.3%) exhibited technical
lags, with a mean lag time of 499 days per native library; 2)
Explicit evidences showed that these technical lags are more
likely to happen on libraries with longer histories and libraries
maintained on Maven Central (compared with Google Maven);
3) Mitigating the technical lags that are on minor and patch
versions in real-world by directly updating versions actually
seldom introduce incompatibility, and doing such updates
could result in considerable benefits in terms of outdated lags.
The main contribution of this paper are as follows:
e The biggest contribution of this paper is the construction
of AndroidN L, by incorporating an extensive and greedy
approach, over 60K native libraries and 292K versions have
been well collected. AndroidNL can be a comprehensive
indexing dataset for Android native libraries, and it could
benefit many downstream tasks, such as SCA detection, etc.
e We have also constructed a new feature dataset from
AndroidN L called AndroidN L_F for LibRARIAN, which
is validated to largely outperform LibRARIAN with its public
dataset and BinaryAl on Android native library identification,
by 78.4% and 82.9%, respectively.
e We further conducted an empirical study on the prevalence
of technical lags and investigated the possibility of updates
for Android native libraries, which revealed some interesting
implications to guide further countermeasures.
e We open sourced AndroidN L for public profit [9].

II. PRELIMINARIES
A. Android Native Libraries

Android native libraries play a critical role in the opti-
mization of the functionality and performance of applications,
yet their adoption remains largely unregulated, leading to a

fragmented and heterogeneous ecosystem. Unlike Java-based
Android development, which follows well-documented APIs
and standardized frameworks, native libraries can be integrated
in a variety of ways, often without stringent guidelines or
oversight [[10]. This lack of uniformity makes it increasingly
difficult to track their usage and potential security risks [2].

B. Related Works

Third-party libraries are a cornerstone of Android applica-
tion development, prompting extensive research on the identi-
fication of third-party library versions. In early time, machine-
learning based approaches are widely adopted. For instance,
Narayanan et al. [11] developed AdDetect, which uniquely
applied semantic detection using machine learning to auto-
matically identify in-app advertising libraries. In contrast, Liu
et al. [12] introduced PEDAL, which distinguishes itself by
detecting ad libraries even through obfuscated code with its
innovative machine classifier. After that, clustering techniques
are gradually introduced to detect TPLs in Android Apps.
Wang et al. [[13] created WuKong, which employs clustering-
based preprocessing to filter third-party libraries. Ma et al. [14]
implemented LibRadar, focusing on detecting libraries through
obfuscation-resistant stable API features. As the progress of
program analysis, characteristics of code syntax and semantics
are also gradually introduced to enhance the performance.
Kalysch et al. [3] proposed an enhanced centroid similarity
metric specifically for the detection of native code libraries.
Zhan et al. [4] launched AT VHunter, which stands out by using
control flow graphs and opcode features to pinpoint vulnerable
third-party library versions accurately. Despite these varied
and innovative approaches, the primary focus has remained
on JVM-based libraries, with rare attention to native libraries.

To the best of our knowledge, there are two papers most
related to our scope. Liu et al. [[15] is the only existing work
that systematically discussed the major building process and
tools of Android Apps, while they focused more on the preva-
lence and practices of configurations of mainstream building
tools instead of the sources of native libraries in Android
builds. Another most relevant work is conducted by Almanee
et al. [2], they introduced LibRARIAN, which employs a novel
similarity metric, bin?sim, leveraging features extracted from
library metadata and identifying strings in read-only sections,
to identify native libraries and their versions within Android
applications. However, only 200 Android Apps, containing in
7.2K binaries, were collected to construct their feature dataset
for validation. Moreover, considering that there is no existing
indexed repository for Android Native Libraries, it is still far
from real-world applicability for LibRARIAN and follow-up
software supply chain management. 7o this end, we aim to
construct the first large scale and comprehensive indexing
dataset for Android Native Libraries in this paper.

III. APPROACH

In this section, we introduce an extensive and greedy ap-
proach to construct the comprehensive dataset for Android Na-
tive Libraries. Starting from the well-known Android dataset

Directly-Included

Libraries Source Code Tracing

v

Self-Compiled

Libraries X
Source Collection

v
LLM-based Searching

Source Code
Remotely-Integrated

Libraries

3.1 Importing Analysis

Binary & Code Mapping
v

3.2 Source Identification

: |(Maven C : f SCA
[1
: 1°) ubuntu debian 1
1

Enhancement

o 1
[!

- = '

' v] B Technicallag |

1 o S) echnical g 1
IC?GltHub GitLab -— | E Analysis !

1~ 1 <> Google Open Source ! " Android Native ! :
'} 2 GooglesMavenRepostory; Library Index | ™ Technical Lag
: ST, ' N Mitigation h
_____________ ’ P ——

Technical Lags in Android
Native Libraries

3.3 Native Library Collection

Fig. 1: Overview of this paper

F-Droid [16] that maintains the mapping of Android apps to
their source code, 1) we first conduct an empirical study to
investigate possible ways of Android native Library importing.
Based on that, 2) we identify all possible sources from which
the Android native libraries are integrated, and after that, 3) we
design a set of pipelines to collect all possible Android native
libraries accordingly, to construct the large scale Android
native library dataset, as presented in Figure

A. Study on Android Native Library Importing

We first investigate the possible ways in which Android
native libraries can be imported into user projects, by inspect-
ing the mapping of source codes and APKs that are well
maintained in the F-Droid [[16] database.

1) Data Preparation: F-Droid is an open source Android
app repository, it provides Android APKs along with their
hosted source code, which strongly supports the subsequent
Android native library source analysis. To this end, we first
collect APKs that have integrated at least one native libraries.
After inspecting the 10,404 APK files that are available on
F-Droid, 2,979 APKs, accounting for 28.6% distinct Android
Apps are selected out. After that, we further filter out APKs
that are with valid source code links, resulting in 2,571 APKs,
containing 17,165 Android native libraries, as the final dataset.

2) Mapping Analysis: To exhaustively identify all possi-
ble ways to import Android native libraries, we randomly
select 100 APKs for each of the first three authors to label
the corresponding importing approaches. The authors are all
experienced researchers on software supply chain with at least
three years of experience. Specifically, they label the importing
approaches by three key factors: 1) whether the Android native
libraries are already integrated in source code repositories
or not; 2) by which tool the Android native libraries are
integrated; 3) what is the evidence of importing corresponding
Android native libraries. The detailed statistics of our labeling
is available on our website [9].

3) Results of Importing Approaches: After cross-
validation among three authors, we identified three major types
of imported Android native libraries.

@ Directly-Included Libraries. The binaries of Android
native libraries are directly included in the source code repos-
itories under certain folders, such as libs/ or jniLibs/.

@ Self-Compiled Libraries. The source code or links to
source code are placed in the source code repositories and
compiled to corresponding binaries using Android Native
Development Kit [17] or CMake [18] when building Apps.

@ Remotely-Integrated Libraries The Android native li-
braries are downloaded by building tools, namely Gradle [[19]]
and commands like apt-get install or curl, from package
repositories and packed into APK when building Apps.

B. Source Identification for Android Native Libraries

Next, based on the importing approaches we identified
above, we design an automated tool SourceF'inder to parse
each APK and its corresponding source code project and iden-
tify possible sources for all 17,165 Android native libraries.

1) SourceFinder: Specifically, for each Android APK,
SourceFinder first decompresses the APK file and locate all
native libraries (i.e., .so files). Then, SourceFinder traverses
its source code and search evidences for library importing.
@ For Directly-Included Libraries: During the traversal,
SourceFinder first identifies all native libraries that are
explicitly retained in the source code project by checking the
file extension (i.e., .so). Specifically, considering that some
directories, such as /lib and /jniLibs, may contain multiple bi-
nary files of the same library for different system architecture,
SourceFinder records these names and locations only once
for further mapping with native libraries identified in APKs.
@ For Self-Compiled Libraries: SourceFinder first identi-
fies all shell scripts that have executed git download command,
as exampled in Listing [I] Then, SourceFinder downloads
such external files as submodule for further analysis along
with the original source codes. After supplementing all the
potentially involved source codes, SourceFinder locates files
that configure the bindings between Android native library
source code and generated binaries. Specifically, we focus
on Android.mk (for Android NDK) and CMakeLists.txt (for
CMake) and identify the corresponding configurations. The
CMakeLists.txt usually declares the compilation of native
libraries by keywords add_library and SHARED, as exam-
pled in Listing 2| The Android.mk configures compiling na-
tive libraries by keywords LOCAL_MODULE and include
$(BUILD_SHARED_LIBRARY), as exampled in Listing [3| To
this end, SourceFinder collects the configured names and
locations of corresponding source code throughtout the source
code projects as records for further mapping to native libraries.
@ For Remotely-Integrated Libraries: SourceFinder iden-
tifies two folds of possible configurations in source code
repositories. For Android native libraries that are introduced by
Gradle, SourceFinder inspects the specific configuration file
build.gradle to identify the imported packages. Specifically,
SourceFinder first inspects the build.gradle in the root

1

2
3
4

[S

W -

4
5
6
7

git clone https://gitlab.linphone.org/BC/public/lin
phone-sdk.git

cd linphone-sdk

git checkout "${BRANCH}"

git submodule sync —--recursive

—

Listing 1: Example of downloading remote source code for self-
compiled libraries in org.simlar [20].

add_library (
fabricjni
SHARED
${fabricjni_SRCS}

Listing 2: Example of declaring Android native libraries in CMake-
list.txt in com.github.meypod.al-azan [21]]

LOCAL_MODULE := main

LOCAL_SRC_FILES :=
$ (SDL_PATH) /src/main/android/SDL_android_main.c
\

o
<

agg-2.5/src/agg_arc.cpp
LOCAL_SHARED_LIBRARIES := SDL2 SDL2_image SDL2_mixer
include S (BUILD_SHARED_LIBRARY)

Listing 3: Example of declaring Android native library in Android.mk
in se.traffar.dot_race (22|

folder, then identifies and records all possible sources con-
figured in allprojects for further collection of Android native
libraries (e.g., line 2~9 in Listing . Next, SourceFinder
visits the dependencies sections in all build.gradle in sub-
modules, to identify and record the GAV (i.e., the group id,
artifact id and version number) of all configured dependency
packages (e.g., line 14 in Listing [). After that, considering
that after Gradle 7.0, Version Catelogs [23|] are introduced,
SourceFinder also identifies the libs.version.toml file, as
exampled in Listing [5] to trace the package names declared
in build.gradle back to their original GAVs (i.e., line 14
in Listing). After that, the identified package names and
repository sources are all logged by SourceFinder for further
mapping analysis with Android native libraries. For Android
native libraries that are integrated from platform-related li-
braries downloaded during the build phase, SourceFinder
specifically inspects all shell scripts to find commands that
download packages, including apt-get, wget, and curl. After
that, SourceFinder record the identified package names and
corresponding registries for further mapping analysis.

@ Source code & Binary Mapping. After collecting all these
clues in source code project that can indicate the integration
of Android native libraries, SourceFinder then maps these
clues back to the native libraries (i.e., .so files) in APKs
to ensure that the source of all native libraries are properly
identified. 1) For Directly-Included Libraries, SourceFinder
directly matches them back to native libaries in APK by names
and hashes. 2) For Self-Compiled Libraries, SourceFinder
maps the source code locations to native libraries by the
defined names in configuration files (e.g., fabricjni in Listing

L Y N

//In the build.gradle file in the root folder.
allprojects/{
repositories {
google ()
mavenCentral ()
maven { url 'https://Jjitpack.io' }
jcenter ()
}
}
// In the build.gradle files in submodule folders
dependencies {
implementation
'com. facebook.fresco:animated-gif:2.5.0"

implementation (libs. jxl.coder)

—

Listing 4: Example of importing Android native libraries in
build.gradle in com.podverse.fdroid [24], 23]

[versions]

jxlCoder = "2.4.0.7"

[libraries]

jxl-coder = { module = "io.github.awxkee:jxl-coder",
version.ref = "JjxlCoder" }

Listing 5: Example of TPL declaration in [libs.version.toml in
ru.tech.imageresizershrinker [20]

and main in Listing [3). 3) For Remotely-Integrated Libraries,
SourceFinder downloads the corresponding packages from
remote repositories, and decompresses them to retrieve the
binary files, then matching them with those native libraries
identified in APKs by LibRARIAN. After this, we can obtain
the detailed mappings between native libraries in APKs and
the corresponding source code locations or remote addresses.
® LLM-based Extensive Searching. After mapping all iden-
tified Android native libraries in APKSs, there could still be
native libraries that are not mapped to any existing import
clues. To ensure that we can retain as many possible sources
as we can, SourceFinder is designed to conduct an extensive
search to find possible sources for those missed cases, based
on LLM. Note that many binaries in APKs may not be
native libraries (e.g., private tools), therefore, the LLM-based
searching only aims to avoid neglecting well-known third-
party binaries instead of ensuring all identified binaries being
able to be mapped to known libraries.

Specifically, for each missed native library, SourceFinder
asked the GPT-40 to provide possible source links, with
additional information, such as APK name and their category
in APKCombo. For each case, SourceFinder queried the
GPT-40 for each prompt in Figure |2| for three times with
temperature set to 0 to ensure the stability of the results. We
merged all results of the three prompts and filtered out those
links of registries or repositories as the final result. After this,
we combined all the collected data sources with previously
identified ones as the candidate sources to collect Android
native libraries.

2) Results: We applied our tool to all the 2,571 APKs and
17,165 native libraries obtained in Section [[II-AT] The exper-

Strategy

Prompts

he form of a link.

‘ou are an expert in Android application development. When developing an Android application, you use a native)

[Android native II (&) E:/CH library called {Android native library name}. Please provide the official source of this native C/C++ library in
library name :

[Android native Il lI
library name +

ou use a native C/C++ library called {Android native library name}. Please provide the official source of this native

Fou are an expert in Android application development. When developing an Android application named {APK name},|
IC/C++ library in the form of a link.

o oK ‘ou are an expert in Android application development. When developing an Android application named {APK name},
ndroid native Il lI lI : o A ’ n e [T]
library name + APK name + cateqans : @ which belongs to the {APK category} category, you use a native C/C++ library called {Android native library name}.

Please provide the official source of this native C/C++ library in the form of a link.

Fig. 2: GPT Prompts

imental results show that, in total, 15,666 out of these 17,165
native libraries in APKs (91.3%) are successfully traced
to their sources with confirmed evidences (i.e., successfully
mapped in Step d). In detail, as presented in Table[I, 96 (0.6%),
6,344 (37.0%), and 9,226 (53.7%) of them are directly-
included, self-compiled, and remotely-integrated libraries, re-
spectively. As for the rest 1,499 unrecognizable native libraries
(8.7%), the extensive searching (i.e., Step ®) resulted in 363
web links of 244 libraries. These links covered 62 unique web
domains, within which only 5 web domains appeared more
than 5 times in all results. Subsequently, we conducted an
manual analysis of the cases that still failed and found that
such missing are due to customized library-importing methods
of specific frameworks. For instance, through manual analysis,
we found that, in projects that are with Qt architecture [27],
QtCreator will automatically include some Qt dependencies
during compilation, and only some developers specified them
in README as prerequisites. Considering that exploring all
such mechanisms may require substantial manual efforts, and
the proportion of missing cases currently is relatively small,
we neglected these cases for now in this work.

Based on these results, we further summarized the collected
sources to determine the native library collection strategies.

For directly-included libraries, since there are no hints about
the sources of them, we are unable to trace where they are
from. Instead, we rely on LibRARIAN to match them with
other collected native libraries to find their identities.

For self-compiled libraries, although some of these libraries
are from external source code repositories and integrated after
local compilation, it does not mean we can directly collect the
corresponding binary files from these repositories. Moreover,
considering that some Android native libraries are directly
kept in source code repositories, we add these source code
repositories as possible sources for further collection, such as
GitHub, GitLab, and Gitdab.

For remotely-integrated libraries, we further investigated
the distribution of their corresponding sources, as presented
in Figure 3] In total, 9 repositories for TPLs are included.
Specifically, Google Maven[28|] and Maven Central[29] are the
top-2 sources of Android native libraries from TPLs. Jcenter
and Bintray also appears in a large proportions of gradle
files, but they have been shutdown and transformed to Maven
Central [30], [31]. The repositories of operating systems are
also major sources of a large portion of remotely-integrated

TABLE I. Source Code Analysis Results

Scenarios | Type | Libraries
Directly-Included | / | 96
. Local Source Code 4,795
Self-Compiled ‘ External Source Code ‘ 1,549
. Third-Party Libraries 8,675
Remotely-Integrated ‘ Operating System Components 551
Mismatched | / | 1,499

libraries, such as Ubuntu[32]] and Debian[33]]. Jitpack[34] is
not an independent central repository that keeps third-party
libraries, configuring it as sources in Android development is a
common practice to simplify the procedure to integrate GitHub
repositories. Sonatype[35] is an alternative sources for most
Maven libraries. The Bintray [36] and CommonsWare [37] are
individual sources of specific software with small groups of
TPLs, and Clojars [38] is a repository for Clojars packages,
considering that Clojars packages are usually for web apps,
and seldom contain jars for Android.

As for the supplement sources from extensive searching, we
identified 62 unique web domains from the searching results.
After excluding those are not actually repositories for Android
native libraries (e.g., issuetrackers [39], online analyzers [40]),
we obtained 4 major web domains (GitHub, gitlab.ujaen.es,
Google Source, and pkgs.org) that could be sources of Android
native libraries. Considering that TPLs on pkgs.org are mainly
OS packages, we only additionally include the Google Source
as a new potential source.

To this end, we collected a set of sources that maintain the
mainstream Android native libraries, including Git-repositories
(i.e., GitHub, GitLab, Gitdab, Google Source, etc.), OS reposi-
tories (i.e., Ubuntu and Debian, etc.), Maven-alike repositories
(i.e., Maven Central and Google Maven, etc.).

C. Native Library Collection

After identifying these possible sources, we collected these
Android native libraries correspondingly.

OS Package Repositories: We mainly collected Android
native libraries from Ubuntu and Debian repositories [32],
[33]], which share the same structure, organizing packages into
subdirectories based on their names. Each package directory
contains multiple versions of binary package files (.deb),
source packages (.tarxz), and Debian source control files
(.dsc). Since Android native libraries are embedded within .deb

1615
12.85%

1217
9.68%
918
7.30% 19 4

758 0.15% 0,03%
6:03%

7995 a4 0.01%

63.60% 0.35%

Maven Central Google Maven
Operating System's Repo Jcenter
Bintray CommonsWare

Jitpack
Sonatype
Clojars

Fig. 3: Date Source Distribution

TABLE II: Android native Libraries Dataset Distribution

Data Source | #Libraries | #Version

Debian 32,261 120,993
Ubuntu 8,040 48,373
Maven Central 18,358 112,849
Google Maven 69 4,872
Google Source 617 2,480
Git Repositories 942 3,230

archives alongside other files, we first recursively downloaded
all .deb files, then decompressed and extracted the native
libraries by BinWalk [41]. We further filtered relevant files and
recorded metadata, including package name, version, compiler
architecture, and release time. This approach resulted in the
collection of 48,373 Android native libraries from Ubuntu and
120,993 from Debian.

TPL Repositories: This type of data source mainly includes
Maven Central [29] and Google Maven [28], which store a
variety of software artifacts. However, identifying Android
native libraries is challenging as they are embedded within .aar
files alongside other resources. To address this, we recursively
downloaded, extracted, and filtered native libraries from .aar
packages and recorded relevant metadata such as package
name, version, and release timestamp. This process resulted in
the collection of 112,849 Android native libraries from Maven
Central and 4,872 from Google Maven.

Source Code Repositories: Google Source [42], GitHub [43],
GitLab, and other Git-based repositories are mainly for the
version control of source code projects, therefore, it is not
straightforward to directly collect all possible Android native
libraries. Instead, we conducted customized searching on each
platform, specifically, we searched with keywords on file
types (i.e., *so and *apk) to filter those that are suspicious
to contain Android native libraries. Moreover, due to their
diverse repository structures and access limitations—including
multiple branches and tags, as well as API restrictions on
retrieval—these platforms also pose challenges for data collec-
tion. To overcome these issues, we employed a combination of
automated downloads, web crawlers, extraction and filtering,
and finally collected 2,480 Android native libraries from
Google Source and 3,230 from Git Repositories.

Overall, we collected a total of 60,287 native libraries with
292,797 versions from various sources and built a complete
dataset Android N L of native libraries along with their data
sources and relevant metadata. The distribution for libraries

and versions in each data source are presented in Table

IV. EXPERIMENTS

In this section, we describe the experiments we conducted
and focus on the following two research questions (RQs):

e RQ1: Completeness of AndroidNL. How complete is
AndroidN L in terms of Android native libraries?

e RQ2: Improvement for SCA. To what extent can
AndroidN L enhance existing SOTA SCA tools in terms of
detecting third-party Android native libraries?

To evaluate AndroidNL, we conducted experiments in
the following two scenarios: @ Evaluating the coverage of
AndroidN L in a large-scale real-world dataset. @ Assessing
the extent to which Android N L enhances the performance
of existing SCA tools for native libraries in Android Apps.
To evaluate the effectiveness of SCA tools with our data,
we constructed the feature dataset based on AndroidN L for
LibRARIAN, which is the SOTA SCA tools for Android native
libraries based on code clone detection techniques. For better
presentation, we denote the feature dataset as Android N L_F.

A. RQI: Completeness of AndroidNL

Given the cutting edge performance of LibRARIAN, we use
it to verify the completeness of AndroidN L. We planned to
extract Android native libraries from a large-scale real-world
Android apps and trace the source of these native libraries in
AndroidN L using LibRARIAN.

DataSet. APKCombo [44] hosts a vast collection of APKs that
largely mirror the most popular and widely used applications
on mainstream App Stores, such as Google Play, making
it a representative repository of mainstream Android apps.
APKCombo offers 24 categories of apps and a “top-popular”
list for each category. Considering the completeness and
timeliness of the projects, we downloaded all APKs released
over the past five years for Android projects listed in the
“top-popular” list across all these 24 categories. In total, we
downloaded 14,734 APKs from 477 Android projects and
extracted 150,914 native libraries (i.e., .so files) from them.
To avoid the rarely used instance and focus on mainstream
libraries, we retained only those found in more than 10
Android projects, specifically totaling 63,008 native libraries.
Among these 63,008 native libraries, features were success-
fully extracted from 61,325 of them by LibRARIAN, denoted
as Real-world dataset.

Result: We compared Real-world dataset against
AndroidNL_F by LibRARIAN. The experimental results
showed that 52,194 binaries, out of 61,325 (85.1%) can
be successfully mapped to AndroidNL_F, which means
these binaries are well covered as Android native libraries
in our AndroidNL dataset. We further investigated the
sources of successfully matched cases in Table Statistics
show that Maven Central [29] plays the most significant
role in AndroidN L, followed by Google Maven [28]] and
GitLab [43], illustrating the preference on these sources.
Subsequently, we conducted an in-depth analysis of all
instances that fail to achieve successful matching:

TABLE III: Initial Sources of Successfully Matched Android
native Libraries

Source MC* GM* Gitlab Github Gitdab
Number 37,021 6,740 4,744 1,863 1,826
Proportion 709% 129% 9.1% 3.6% 3.5%

MC* represents Maven Central. GM™* represents Google Maven.

e Self-Compiled Android Native Libraries. As discussed
in Section [II-A2] Android native libraries from F-Droid
dataset revealed self-compiled 37.0% of libraries. Based on
this observation, we hypothesized that a similar proportion of
self-compiled C/C++ libraries may exist within APKCombo.
However, given that APKCombo does not provide access to
the source code of Android projects, identifying such self-
compiled libraries required an alternative approach. Specifi-
cally, we compared the SHA-256 hashes and filenames of un-
traceable Android native libraries with those of self-compiled
ones in Section Out of the 9,131 untraceable Android
native libraries, 3,039 exhibited identical filenames and SHA-
256 hashes to self-compiled libraries, while 3,349 shared iden-
tical filenames but differed in their SHA-256 hashes, indicating
in total 6,388 (10.1%) libraries were likely introduced through
self-compilation.

e Incomplete Version Collection Due to Data Source
Updates. In certain instances, the identification results of
Android native libraries with the same filename, originating
from different versions of the same Android project, were
inconsistent. Considering that in Android applications, the use
of Android native libraries typically exhibits a certain level
of continuity across versions, i.e., in most cases, different
versions of an APK tend to reuse identical or similar native
library, we hypothesized that these failures may be attributed to
incomplete version collection rather than the complete absence
of the data source. This data loss may be caused by updates
to the data sources. Among the remaining 2,743 failed cases,
446 exhibited the aforementioned phenomenon.

Finding 1: In the Real-World dataset we constructed,
52,194 binaries (85.1%) identified in Apps from AP-
KCombo can trace the source within our collected
AndroidNL dataset, and the majority of the mis-
matched cases (10.1%) are likely introduced through self-
compilation, verifying the completeness of our Android
native library dataset.

B. RQ2: Improvement for SCA

Given the large coverage of AndroidN L, we further assess
the extent to which AndroidN L_F enhances the performance
of existing Android native library version identification tools
with two selected baselines. These baselines include SOTA
model and leading commercial tool, ensuring that the ex-
perimental results are convincing and comprehensive. The
baselines including our own enhanced approach are as follows:
e Baseline 1: LibRARIAN model with its public dataset.
e Baseline 2:BinaryAl [8] platform.

e Our approach: LibRARIAN with AndroidNL_F.

Due to the upload file size and API limitations on the
BinaryAl platform, we had to use a smaller dataset for the
BinaryAl experiment. Therefore, to compare with Baseline
1, we applied the pre-constructed Real-world dataset, and
to compare with Baseline 2, we randomly selected 1,000
Android native libraries from the Real-world dataset to create
a smaller dataset. Our enhanced approach is implemented to
verify whether Android N L_F can enhance both the SOTA
model and the leading commercial tool.

LibRARIAN: We conducted comparative experiments on
Real-world dataset, using both the origin public feature
dataset of 825 native libraries provided by LibRARIAN and
AndroidNL_F. The experimental results demonstrated an
recognition increase from 4,121 libraries (6.7%) to 52,194
libraries (85.1%) beyond LibRARIAN’s original dataset,
and all libraries identified by LibRARIAN with its public
dataset can be successfully identified by LibRARIAN with
AndroidN L_F, indicating that AndroidNL_F can signifi-
cantly enhances the capability of LibRARIAN since LibRAR-
IAN matches binaries against a pre-constructed reference
set, the accuracy of LibRARIAN depends critically on the
coverage and completeness of that reference corpus. Moreover,
while the LibRARIAN public dataset does not specify the
source of each data, our dataset provides detailed annotations
on origins of native Android libraries, offering a foundation
for related tasks such as technical lag analysis in the future.
BinaryAl: For BinaryAl, we evaluated its official API and
found that, among the 1,000 Android native libraries, 41.2%
yielding a total of 1,351 component links. After manual
inspecting, we only identified 151 official links corresponding
to the native libraries, and all of them are from GitHub.
In comparison, we ran our enhanced approach to trace the
origins of these 1,000 Android native libraries and successfully
identified 980 of them with detailed original sources, achieving
a traceability success rate of 98.0%. Moreover, our enhanced
approach successfully identified 150 out of the 151 succeed
cases of BinaryAl, and even for the missed one, our enhanced
approach actually has identified its source but this result is
rejected due to its own threshold of required similarity. These
comparative experiments led us to the conclusion that integrat-
ing AndroidN L_F with LibRARIAN significantly improves
the recognition rate of Android native libraries from 15.1% to
98.0%. We believe our dataset has a distinct advantage because
it is specifically focused on Android native libraries, whereas
BinaryAl targets a broader range of domains, resulting in less
effective performance.

Finding 2: Regarding Android native library identification,
compared to the SOTA and leading commercial tool, the
use of AndroidN L_F results in an improvement of 78.4%
and 82.9% in recognition rate respectively, indicating the
outstanding usefulness of AndroidNL_F.

V. EMPIRICAL STUDY OF OUTDATED NATIVE LIBRARIES

The above experiments have demonstrated that Android N L
can significantly improve the detection of third-party Android

native libraries in practice, based on it, we further investigate
the prevalence and severity of technical lags of outdated native
libraries in Android Apps, and to what extent they can be
relieved, by answering the following two research questions:

e RQ3: Technical Lag Analysis. How prevalent are technical
lags existing in Android APKs?

e RQ4: Technical Lag Mitigation. To what extent can
Android developers automatically update embedded na-
tive libraries in APKs without introducing compatibility
issues?

A. RQ3: Technical Lag Analysis

In Android apps, the technical lag refers to issues of not
using the latest versions of dependencies, especially the native
libraries, potentially leading to challenges in performance,
security, and compatibility. We conducted a large-scale em-
pirical study based on RQI result to analyze the prevelance
of technical lag in mainstream Android Apps.

1) Dataset: To systematically investigate the technical lags
of Android native libraries, we conducted a detailed investi-
gation of the traced data sources in RQ1 results, as presented
in Table In this RQ, we will analyze the technical lag
phenomenon as comprehensive as possible, provided that
the data sources can provide accurate library release times.
Considering Git repositories are not always considered as
publishing platforms, and directly using their time could be
unfair and amplify the technical lags, We have to exclude
libraries related to Git in this RQ. In the end, we chose the
remaining native libraries from Google Maven and Maven
Central, luckily they accounted for 83.8% of Real-world
dataset, as the dataset for this RQ, also known as Real-world
dataset for Technical Lag.

As for the calculation of technical lags, APKCombo pro-
vides release timestamps for each published APK, while
Maven Central and Google Maven provide last modification
timestamps for each released library component. For a given
case, if APK did not include the latest version of an Android
native library at its publish time, we considered this case to
exhibit technical lag, and in this case, we calculated the time
interval between the APK release time and the published time
of the included Android native libraries as the value of tech-
nical lag. Note that we did not follow traditional time-based
technical lag [435] to calculate the time interval between current
date and release time of the version of included Android native
libraries, because the APKs are usually unmodifiable after they
are published, and usually developers update APKs by directly
releasing a new version. In this case, we focus on the lags of
versions that developers overlooked but are supposed to be
aware when publishing APKs.

2) Lag Distribution over Native Libraries: Our analysis
indicated that among all the 43,761 Android native libraries
used in 5,699 APKs, 21,147 (50.3%) cases from 2,864 (48.3%)
APKs exhibited technical lag, demonstrating that technical lag
is a prevalent phenomenon in Android apps.

We further investigated the distribution of technical lag time
in Android native libraries. For each APK, we defined its

total lag time as the sum of the technical lag times of all
native libraries it uses. [45]. Subsequently, we analyzed the
technical lag from both the APK and the individual native
library perspective.

@ Lag Distribution regarding APKs: First, the distribution
of APKs across different technical lag intervals is shown in
Figure 4] The results indicated that technical lag is prevalent
for more than one year, suggesting that developers of Android
applications have largely neglected the selection and updating
of Android native library versions, leading to severe technical
lag issues. Next, we analyzed the average technical lag for
APKs across app store categories, the results revealed that
APKSs under Event category exhibit the longest average delay,
whereas entertainment APKs experience relatively smaller
technical lag.

@ Lag Distribution regarding Libraries: The average tech-
nical lag for each native library was calculated based on its
usage across APKs (Figure [5). The results showed that while
most libraries exhibit relatively concentrated lag durations,
some experience significantly higher technical lag. The median
lag was 511 days, with the first and third quartiles at 295 and
783 days, respectively, indicating that most native libraries lag
by over a year. This highlights the need for developers to make
informed library choices and ensure timely updates.

3) Lag Distribution over Semantic Versions: We also
investigated the distribution of lagged versions, as categorized
into three types based on SemVer [46]: 1) Major version
update lag, where the delay crosses major versions and the
incompatible changes are allowed. 2) Minor version update
lag, where the delay occurs across minor versions only and
backward-compatible functionality is added. 3) Patch version
update lag, where neither major nor minor version updates are
required and only compatible changes are allowed. It implies
that minor and patch version lag has the potential for auto-
mated upgrades. Among all the 21,147 lagged cases, 34.4%
required a major version upgrade and 41.3% for the minor,
whereas the remaining 24.3% required the patch upgrade only,
as presented in Figure[7] indicating that 65.6% could have been
automatically upgraded. In Section we will explore the
feasibility of automated upgrades for them.

4) Influencing Factors of Technical Lag: After validating
the presence of technical lag in Android native libraries, we
investigated the factors influencing the lag. Specifically, we
analyzed the impact of library usage frequency, library release
time, APK release time, and library source on technical lag.
Pearson [47] and Spearman [48|] correlation metrics were
used to quantify these influences (-1: perfect negative and +1:
perfect positive).

The experimental results show that the usage frequency of
Android native libraries has minimal impact on technical lag,
with Pearson and Spearman correlation coefficients of 0.05
and 0.11, respectively, indicating no significant correlation.
Similarly, the release time of APKs has little effect, as evi-
denced by Pearson (-0.11) and Spearman (-0.24) coefficients,
neither of which suggests a strong relationship. In contrast, the
release time of Android native libraries strongly influences

o
0-30 {wg

2500 e

2000 LY

1500

1000 £

25th Percentile: 294.64
Median: 510.96
75th Percentile: 782.73

2500

2000

1500

1000

Before Upgrade
After Upgrade

- Q1 (Before Upgrade): 294.64
- Median (Before Upgrade): 510.96

Q3 (Before Upgrade): 782.73
Q1 (After Upgrade): 86.83

- Median (After Upgrade): 111.14

Q3 (After Upgrade): 227.77

30-60

60-180

>7300

180-365
365-730
730-1825
1825-3650

Lag Days Interval

3650-7300

Fig. 4: APK Lag Interval

Major

Minor

500

Fig. 5: Library Lag Distribution

| Patch

Android Native Libraries

B. RQA4: Technical Lag Mitigation

Fig. 6: Effectiveness of version updates.

Lag

Lag

' Lag

7273, 34.4% 8743, 41.3% 5131, 24.3%

Fig. 7: Lag Distribution over Semantic Versions

TABLE IV: Lag Distribution from Different Sources

\ lag(days) count \ .
Source |5 18G T 180365 | 365730 | 7303607 | median | mean
all | 2,142 | 4748 | 6997 7,260 533 | 739
MC* | 2,132 | 4282 | 4520 6,944 530 | 774
GM* | 10 466 | 2477 316 543 | 546

MC* represents Maven Central. GM* represents Google Maven.

technical lag, with Pearson and Spearman coefficients of
0.94 and 0.86, respectively. This suggests that libraries with
longer histories are more prone to technical lag issues, this is
reasonable as there could be more than one major version
tracks maintained simultaneously. However, such delays of
adopting new versions could also lead to the gradual delay
of adopting new features and better performance.

To evaluate the impact of a library’s source on technical lag,
we analyzed the lag of native libraries from different sources.
The experimental results presented in Section indicate
that Android native libraries from Maven Central experience
a maximum technical lag of 3,607 days, with the mean as
774 days and the median as 530 days. In contrast, libraries
from Google Maven have a lower maximum lag of 1,516
days, with a mean lag of 546 days and a median of 543
days. Comparatively, Android native libraries from Google
Maven show significantly shorter technical lag than those
from Maven Central in terms of maximum and average delay.
This disparity may stem from differences in data maintenance
quality between sources. Developers are thus encouraged to
prioritize well-maintained sources to minimize technical lag.

Finding 3: The technical lag of native libraries is pervasive
within the Android ecosystem, with a mean lag time of 739
days. Specifically, these lags are more commonly happened
on libraries that are with longer history; libraries released
on Maven Central, compared to Google Maven which
is with more regulated maintenance, also relatively have
longer lags. Android developers are suggested to consider
these factors when selecting libraries.

The prevalence of technical lags is known to amplify the
risks of security exposure, incompatibilities, and operational
instability in user projects, and it also inflates maintenance
costs, erodes compliance and vendor support, and slows de-
livery of new capabilities, which could ultimately reducing
engineering velocity, user trust, and competitiveness. After
demonstrating the prevalence of technical lag in RQ3, in
this RQ, we aim to investigate to what extent can Android
developers avoid the technical lags on native libraries, and
explore automated and applicable upgrade strategy to mitigate
the risks of technical lags.

Data Preparation. There, we first constructed another dataset
with precisely labelled library versions. To achieve this, we
selected data from GitHub [43], where project source code
provides a reliable reference for exact library versions. To
ensure data comprehensiveness while limited by GitHub API
return value quantitative, we used the GitHub API to collect
1,000 repositories for each of the 20 star count ranges, totaling
20,000 repositories. Filtering for those with APKs in their
releases yielded 240 repositories. After manual analysis, we
excluded repositories lacking Android native libraries or exact
version information, and take the latest release tags for each
repository, ultimately collecting 261 libraries from 68 APKs.

1) Compatible Version Updates: We first look into the
proper version update strategies for Android native libraries
that would not introduce incompatibility. For these 68 Android
projects, we manually compiled their source code hosted on
GitHub [43] and upgraded the native libraries used sequen-
tially. To ensure the compatibility, only minor and patch
upgrades have been attempted.

We assessed post-upgrade compatibility using two comple-
mentary approaches:

@® The Monkey Test. Monkey programmatically emits
pseudo-random UI events (taps, swipes, keystrokes, rotations,
back/home) to exercise diverse paths; a run is deemed a pass
if no uncaught exceptions, ANRs, or fatal crashes occur and
the app remains responsive until the event budget is exhausted.
We set the number of events to 5000 and the seed value to
12345 for reproduction.

@ The SceneDroid Test [49]. SceneDroid combines guided
exploration, state fuzzing, and indirect launching (e.g., deep
links/intents) to construct a fine-grained Scene Transition
Graph (SceneTG) whose nodes/edges represent GUI states

and feasible transitions. We build SceneTGs before and after
the upgrade and compare them using overlap of reachable
nodes/edges and local neighborhood similarity to detect nav-
igation changes. SceneDroid analysis is restricted to apps
whose baseline APK yields a well-formed SceneTG to avoid
confounding from exploration incompleteness.

Results. Across 68 Android projects, 31 (45.6%) were already
on the latest minor versions. Of the remaining 37, upgrading
to the latest minor versions resulted in 31 Monkey passes
(83.8%), suggesting limited regression risk under randomized
interaction. For SceneDroid, 25 apps also passed post-upgrade
with exactly same SceneTGs and no material divergences
in navigation structure. As for the failed 12 cases, after
consulting the authors of SceneDroid, the failures are due
to limitations of the re-packaging tool they used during the
process. These findings indicate that an automated upgrade-to-
latest-minor version strategy can largely reduce technical lag
while rarely introducing compatibility regressions detectable
by stress testing or dynamic GUI-equivalence analysis, which
could be considered as solutions for developers to upgrade
legacy native libraries in their Apps.

2) Large-Scale Trial on the real-world dataset: Subse-
quently, we followed the previous same upgrade strategy to
perform automated upgrades for the Android native library
in RQ2. The experimental results in Figure [f] illustrate the
impact of our automation upgrade strategy, with the blue and
green areas representing technical lag distributions before and
after the upgrade, respectively. The results show a significant
reduction in technical lag. Specifically, the 25th percentile
decreased from 295 to 87 days (208-day reduction), the me-
dian decreased from 511 to 111 days (400-day reduction), and
the 75th percentile decreased from 783 to 228 days (555-day
reduction). These improvements highlight the effectiveness of
our approach in mitigating technical lag, benefiting the overall
Android ecosystem.

Finding 4: The automatic Android native library upgrade
strategy, namely, upgrading to the latest stable version with
the same major version, has been validated. We applied
this upgrade strategy to Android native libraries with the
phenomenon of technical lag in RQ2 and reduce the 25th
percentile lag time by 208 days, the median lag time by
400 days, and the 75th percentile lag time by 555 days.

VI. LIMITATIONS AND THREATS TO VALIDITY.

Our study has several limitations, though their influence
is mitigated by design choices and empirical validation. 1)
Sample Selection: When constructing AndroidN L, we chose
to analyze potential data sources from the APKs published
on F-Droid. Due to the open-source nature of F-Droid, this
may have overlooked the use of native libraries in closed-
source Android applications to some extent. However, in the
experimental section, we verified the coverage of AndroidN L
in the real-world Android ecosystem through data from AP-
KCombo, thus demonstrating the rationality of our approach
and the selection of F-Droid. Similarly, we analyzed APKs

from popular apps on APKCombo [44] (2019-2024), which
may overlook older or less popular apps. However, since
popular apps tend to be well-maintained and widely used,
they provide a representative view of real-world dependency
management. 2) Data Collection Constraints: GitHub’s API
restrictions [43] limited our ability to retrieve all Android
native libraries. To mitigate this, we included libraries refer-
enced in build.gradle files (Section [[II-A2), ensuring that our
dataset still captures the most commonly used dependencies.
3) Comparison Constraints: Due to the limitation of the
binaryai API, in RQ2, our enhanced approach only used 1000
cases for comparison with Baseline 2 without conducting full
comparison, which may lead to doubts about the significance
of the results. However, considering that 1000 cases were
randomly selected and the final results showed a large gap
(an improvement of 82.9% in recognition rate), the conclusion
can be considered as valid. 4) Automated Upgrade Scope:
Our upgrade strategy limits recommendations to the same
major version to avoid breaking changes. While cross-major
upgrades are sometimes feasible, they often require manual
intervention due to potential incompatibilities, making them
impractical for large-scale automation. The current approach
thus provides a realistic and applicable upgrade strategy.

VII. CONCLUSION

In this paper, we aimed to investigate the outdated native
libraries in Android Apps. To achieve this, we constructed
the first comprehensive indexing dataset for Android native
libraries AndroidN L, by following a greedy and aggressive
strategy to identify repository sources and collect native li-
braries as many as we can. AndroidN L is proved to achieve
high coverage (at least 85.1%) on binaries used in real-world
Android Apps, and can effectively improve SOTA SCA detec-
tions with at least 78.4% recognition rate improvement. After
that, we investigated the prevalence and possible solutions for
technical lags on Android native libraries, which shed light on
better countermeasures for the open source community.

VIII. DATA AVAILABILITY

The constructed AndroidN L other experiment datasets can
be found at our website [9].

ACKNOWLEDGMENTS

This research is partially supported by the National Natural
Science Foundation of China (No. 62472309); the National
Research Foundation, Singapore, and DSO National Labora-
tories under the AI Singapore Programme (AISG Award No:
AISG4-GC-2023-008-1B); the National Research Foundation
Singapore and the Cyber Security Agency under the National
Cybersecurity R&D Programme (NCRP25-P04-TAICeN); and
the Prime Minister’s Office, Singapore under the Campus for
Research Excellence and Technological Enterprise (CREATE)
Programme. Any opinions, findings and conclusions, or rec-
ommendations expressed in these materials are those of the
author(s) and do not reflect the views of the National Research
Foundation, Singapore, Cyber Security Agency of Singapore,
Singapore.

[1]

[2]

[3]

[5]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]

[22]

REFERENCES

J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix, T. F.
Bissyandé, and J. Klein, “Jucify: A step towards android code unification
for enhanced static analysis,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1232—1244.

S. Almanee, A. Unal, M. Payer, and J. Garcia, “Too quiet in the
library: An empirical study of security updates in android apps’ native
code,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 1EEE, 2021, pp. 1347-1359.

A. Kalysch, O. Milisterfer, M. Protsenko, and T. Miiller, “Tackling
androids native library malware with robust, efficient and accurate
similarity measures,” in Proceedings of the 13th international conference
on availability, reliability and security, 2018, pp. 1-10.

X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability identi-
fication in android applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 1EEE, 2021, pp. 1695—
1707.

Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “{LibScan}:
Towards more precise {Third-Party} library identification for android
applications,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 3385-3402.

Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in android applications with
high precision and recall,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2018, pp. 141-152.

“Go modules services,” 2023, (Accessed on 03/27/2023). [Online].
Available: https://proxy.golang.org/

“Binaryai,” 2025, [Online; accessed 2025-03-03]. [Online]. Available:
https://www.binaryai.cn/

“Android native library,” [Online; accessed 2025-03-14]. [Online].
Available: https://sites.google.com/view/hi-library

A. Ruggia, A. Possemato, S. Dambra, A. Merlo, S. Aonzo, and
D. Balzarotti, “The dark side of native code on android,” ACM Trans-
actions on Privacy and Security, 2022.

A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of android ad libraries using semantic analysis,” in 20/4 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP). 1EEE, 2014, pp. 1-6.

B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
annual international conference on mobile systems, applications, and
services, 2015, pp. 89-103.

H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accu-
rate two-phase approach to android app clone detection,” in Proceedings
of the 2015 international symposium on software testing and analysis,
2015, pp. 71-82.

Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in Proceedings of the
38th international conference on software engineering companion, 2016,
pp. 653-656.

P. Liu, L. Li, K. Liu, S. Mclntosh, and J. Grundy, “Understanding the
quality and evolution of android app build systems,” Journal of Software:
Evolution and Process, vol. 36, no. 5, p. €2602, 2024.

“F-droid - free and open source android app repository,” 2025, [Online;
accessed 2025-03-03]. [Online]. Available: https://f-droid.org/
“Android ndk android developers,” 2025, [Online; accessed
2025-03-03]. [Online]. Available: https://developer.android.com/ndk:
“Cmake - upgrade your software build system,” [Online; accessed
2025-03-13]. [Online]. Available: https://cmake.org/

S. P. M. a. G. Jon Janego, “Gradle build tool,” 2 2025, [Online;
accessed 2025-03-03]. [Online]. Available: |https://gradle.org/
“simlar-android/scripts/bootstrap-liblinphone.sh at master
simlar/simlar-android,” [Online; accessed 2025-03-14]. [Online].
Available: |https://github.com/simlar/simlar-android/blob/master/scripts/
bootstrap-liblinphone.sh

“meypod/al-azan: Privacy focused ad-free open-source muslim adhan
(islamic prayer times) and gibla app,” [Online; accessed 2025-03-14].
[Online]. Available: https://github.com/meypod/al-azan/tree/main
“przemekr / dot-race android / jni / src / android.mk — bitbucket,”
12 2014, [Online; accessed 2025-03-14]. [Online]. Available: https://
bitbucket.org/przemekr/dot-race/src/master/android/jni/src/Android.mk

(23]

[24]

(25]

[26]

[27]
(28]
[29]

[30]

[31]

(32]
(33]
[34]
[35]

(36]

(371
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

droidcon, “Mastering gradle dependency management with
version catalogs: A comprehensive guide - droidcon,” 4
2023, [Online; accessed 2025-03-13]. [Online]. Available:

https://www.droidcon.com/2023/04/12/mastering- gradle-dependency-
management- with- version-catalogs-a-comprehensive- guide/
“podverse-fdroid/android/build.gradle at develop - podverse/podverse-
fdroid,” [Online; accessed 2025-03-14]. [Online]. Available: https://
github.com/podverse/podverse-fdroid/blob/develop/android/build.gradle
“podverse-fdroid/android/app/build.gradle at develop
podverse/podverse-fdroid,” [Online; accessed 2025-03-14]. [Online].
Available: |https://github.com/podverse/podverse-fdroid/blob/develop/
android/app/build.gradle

“Imagetoolbox/gradle/libs.versions.toml at master - t8rin/imagetoolbox,”
[Online; accessed 2025-03-14]. [Online]. Available: https://github.com/
T8RIN/ImageToolbox/blob/master/gradle/libs.versions.toml

“Qt — tools for each stage of software development lifecycle,” 10 2025,
[Online; accessed 2025-10-17]. [Online]. Available: https://www.qt.io/
“Google’s maven repository,” 2025, [Online; accessed 2025-03-03].
[Online]. Available: https://maven.google.com/web/index.html

“Central repository:,” 2025, [Online; accessed 2025-03-03]. [Online].
Available: https://repo.maven.apache.org/maven2/

adia, “Jcenter sunset on august 15th, 2024 — jfrog,” 7 2024,
[Online; accessed 2025-03-14]. [Online]. Available: https://jfrog.com/
blog/jcenter-sunset/

giannit, “Service end for bintray, jcenter, gocenter, and
chartcenter jfrog,” 2 2021, [Online; accessed 2025-03-
14]. [Online]. Available: https://jtrog.com/blog/into-the-sunset-bintray-
jcenter-gocenter-and-chartcenter/

“Index of /ubuntu/pool/main,” 2025, [Online; accessed 2025-03-03].
[Online]. Available: https://archive.ubuntu.com/ubuntu/pool/main/
“Index of /debian/pool/main,” 2025, [Online; accessed 2025-03-03].
[Online]. Available: https://ftp.debian.org/debian/pool/main/

JitPack.io, “Jitpack — publish jvm and android libraries,” 2025,
[Online; accessed 2025-03-03]. [Online]. Available: https://jitpack.io/
“Software supply chain management — sonatype,” 2025, [Online;
accessed 2025-03-03]. [Online]. Available: https://www.sonatype.com/

“Gradle - plugin: com.jfrog.bintray,” 2025, [Online; accessed
2025-03-03]. [Online]. Available: https://plugins.gradle.org/plugin/
com.jfrog.bintray

“Commonsware,” 2025, [Online; accessed 2025-03-03]. [Online].

Available: https://commonsware.com/

“Clojars,” 2025, [Online; accessed 2025-03-03]. [Online]. Available:
https://clojars.org/

“Assigned to me - issue tracker,” 2025, [Online; accessed 2025-03-15].
[Online]. Available: https://issuetracker.google.com

A. Abraham, “Mobile security framework - mobsf,” 2025, [Online;
accessed 2025-03-15]. [Online]. Available: https://www.mobsf.live/
ReFirmLabs, “Github - refirmlabs/binwalk: Firmware analysis tool,”
2025, [Online; accessed 2025-03-03]. [Online]. Available: https:
//github.com/ReFirmLabs/binwalk/

“Google open source,” 2025, [Online; accessed 2025-03-03]. [Online].
Available: https://opensource.google/

“Github - build and ship software on a single, collaborative platform
- github,” 1 2025, [Online; accessed 2025-03-03]. [Online]. Available:
https://github.com/

“Apkcombo,” 2025, [Online; accessed 2025-03-03]. [Online]. Available:
https://apkcombo.app/|

J. M. Gonzalez-Barahona, “Characterizing outdateness with technical
lag: an exploratory study,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, 2020, pp.
735-741.

T. Preston-Werner, “Semantic versioning 2.0.0 — semantic versioning,”
[Online; accessed 2025-03-15]. [Online]. Available: https://semver.org/
C. to Wikimedia projects, “Pearson correlation coefficient - wikipedia,”
5 2003, [Online; accessed 2025-03-15]. [Online]. Available: https:
/fen.wikipedia.org/wiki/Pearson_correlation_coefficient

——, “Spearman’s rank correlation coefficient - wikipedia,” 5
2003, [Online; accessed 2025-03-15]. [Online]. Available: https:
/fen.wikipedia.org/wiki/Spearman%?27s_rank_correlation_coefficient

X. Zhang, L. Fan, S. Chen, Y. Su, and B. Li, “Scene-driven
exploration and gui modeling for android apps,” in Proceedings of
the 38th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE °23. IEEE Press, 2024, p. 1251-1262. [Online].
Available: https://doi.org/10.1109/ASE56229.2023.00179

https://proxy.golang.org/
https://www.binaryai.cn/
https://sites.google.com/view/hi-library
https://f-droid.org/
https://developer.android.com/ndk
https://cmake.org/
https://gradle.org/
https://github.com/simlar/simlar-android/blob/master/scripts/bootstrap-liblinphone.sh
https://github.com/simlar/simlar-android/blob/master/scripts/bootstrap-liblinphone.sh
https://github.com/meypod/al-azan/tree/main
https://bitbucket.org/przemekr/dot-race/src/master/android/jni/src/Android.mk
https://bitbucket.org/przemekr/dot-race/src/master/android/jni/src/Android.mk
https://www.droidcon.com/2023/04/12/mastering-gradle-dependency-management-with-version-catalogs-a-comprehensive-guide/
https://www.droidcon.com/2023/04/12/mastering-gradle-dependency-management-with-version-catalogs-a-comprehensive-guide/
https://github.com/podverse/podverse-fdroid/blob/develop/android/build.gradle
https://github.com/podverse/podverse-fdroid/blob/develop/android/build.gradle
https://github.com/podverse/podverse-fdroid/blob/develop/android/app/build.gradle
https://github.com/podverse/podverse-fdroid/blob/develop/android/app/build.gradle
https://github.com/T8RIN/ImageToolbox/blob/master/gradle/libs.versions.toml
https://github.com/T8RIN/ImageToolbox/blob/master/gradle/libs.versions.toml
https://www.qt.io/
https://maven.google.com/web/index.html
https://repo.maven.apache.org/maven2/
https://jfrog.com/blog/jcenter-sunset/
https://jfrog.com/blog/jcenter-sunset/
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://archive.ubuntu.com/ubuntu/pool/main/
https://ftp.debian.org/debian/pool/main/
https://jitpack.io/
https://www.sonatype.com/
https://plugins.gradle.org/plugin/com.jfrog.bintray
https://plugins.gradle.org/plugin/com.jfrog.bintray
https://commonsware.com/
https://clojars.org/
https://issuetracker.google.com
https://www.mobsf.live/
https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/
https://opensource.google/
https://github.com/
https://apkcombo.app/
https://semver.org/
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://doi.org/10.1109/ASE56229.2023.00179

	Introduction
	Preliminaries
	Android Native Libraries
	Related Works

	Approach
	Study on Android Native Library Importing
	Data Preparation
	Mapping Analysis
	Results of Importing Approaches

	Source Identification for Android Native Libraries
	SourceFinder
	Results

	Native Library Collection

	Experiments
	RQ1: Completeness of AndroidNL
	RQ2: Improvement for SCA

	Empirical Study of Outdated Native Libraries
	RQ3: Technical Lag Analysis
	Dataset
	Lag Distribution over Native Libraries
	Lag Distribution over Semantic Versions
	Influencing Factors of Technical Lag

	RQ4: Technical Lag Mitigation
	Compatible Version Updates
	Large-Scale Trial on the real-world dataset

	Limitations and Threats to Validity.
	Conclusion
	Data Availability
	References

